
 
 

Approved for public release; further dissemination unlimited 

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

 

Preprint 
UCRL-JC-146852 

Multiresolution Distance 
Volumes for Progressive 
Surface Compression  

 

D. A. Laney, M. Bertram, M. A. Duchaineau, N. L. Max 

This article was submitted to 1st International Symposium on 3D Data 
Processing Visualization and Transmission, Padova, Italy,  
June 19-21, 2002 

January 14, 2002 
 



DISCLAIMER 
 
This document was prepared as an account of work sponsored by an agency of the United States Government.  
Neither the United States Government nor the University of California nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or the University of California.  The views and 
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or 
the University of California, and shall not be used for advertising or product endorsement purposes. 
 
This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made 
before publication, this preprint is made available with the understanding that it will not be cited or reproduced 
without the permission of the author. 
 
This work was performed under the auspices of the United States Department of Energy by the University of 
California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. 
 
 

This report has been reproduced directly from the best available copy. 
 

Available electronically at http://www.doc.gov/bridge 
Available for a processing fee to U.S. Department of Energy 

And its contractors in paper from 
U.S. Department of Energy 

Office of Scientific and Technical Information 
P.O. Box 62 

Oak Ridge, TN 37831-0062 
Telephone:  (865) 576-8401 
Facsimile:  (865) 576-5728 

E-mail: reports@adonis.osti.gov 
 

Available for the sale to the public from 
U.S. Department of Commerce 

National Technical Information Service 
5285 Port Royal Road 
Springfield, VA 22161 

Telephone:  (800) 553-6847 
Facsimile:  (703) 605-6900 

E-mail: orders@ntis.fedworld.gov 
Online ordering: http://www.ntis.gov/ordering.htm 

Or 
Lawrence Livermore National Laboratory 

Technical Information Department’s Digital Library 
http://www.llnl.gov/tid/Library.html 

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm


 
 
This document was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor the University of California nor 
any of their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or the University 
of California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or the University of California, and shall not be 
used for advertising or product endorsement purposes. 
 
 

 



3D DATA PROCESSING VISUALIZATION AND TRANSMISSION 1

Multiresolution Distance Volumes for Progressive
Surface Compression

Daniel Laney, Martin Bertram, Mark Duchaineau, and Nelson Max

Abstract—
Surfaces generated by scientific simulation and range

scanning can reach into the billions of polygons. Such sur-
faces must be aggressively compressed, but at the same time
should provide for level of detail queries. Progressive com-
pression techniques based on subdivision surfaces produce
impressive results on range scanned models. However, these
methods require the construction of a base mesh which pa-
rameterizes the surface to be compressed and encodes the
topology of the surface. For complex surfaces with high
genus and/or a large number of components, the computa-
tion of an appropriate base mesh is difficult and often infea-
sible.

We present a surface compression method that stores sur-
faces as wavelet-compressed signed-distance volumes. Our
method avoids the costly base-mesh construction step and
offers several improvements over previous attempts at com-
pressing signed-distance functions, including an

�������
dis-

tance transform, a new zero set initialization method for
triangle meshes, and a specialized thresholding algorithm.
We demonstrate the potential of sampled distance volumes
for surface compression and progressive reconstruction for
complex high genus surfaces.

I. INTRODUCTION

HE rapid increase in computing power and advance-
ments in surface acquisition techniques have enabled

the creation of meshes of 200 million triangles and larger
[1], [2], [3]. This has led to a dilemma in surface visual-
ization: meshes of this size and complexity require both
efficient compression techniques and a capacity for level-
of-detail interrogation. Simulation codes running on the
newest supercomputers will be able to generate meshes
measured in billions of triangles. These surfaces will
be complex and time-varying, multiplying the storage re-
quirements and complicating the compression algorithms.
Progressive compression algorithms enable both efficient
compression and level of detail reconstruction. A pro-
gressive compression algorithm re-orders the bit stream in
such a way that the most relevant information is near the
front of the stream. Thus, with a small number of bits a
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usable approximation of a surface can be obtained for in-
teraction and browsing. As a user finds areas of interest,
more bits can be decompressed to provide the needed de-
tails. This paper presents a system for progressively com-
pressing surfaces via a signed-distance representation.

Recently, subdivision surfaces have been shown to be
effective for mesh compression as the connectivity in-
formation only needs to be stored for the base mesh.
The work of Khodakovsky [4] and Bertram [5] show that
wavelet-based techniques on subdivision surfaces result in
competitive compression rates and allow for progressive
decompression.

There exist two open problems with subdivision based
approaches. First, a coarse base mesh is required be-
fore the subdivision can be applied. As surfaces become
large and complex, with an ever greater number of com-
ponents, the construction of the base mesh becomes prob-
lematic. Even if a base mesh is produced, a surface with
hundreds or thousands of components requires topological
modification in order to achieve usable progressive recon-
structions. The hybrid mesh representation proposed by
Guskov [6] may alleviate the problems of base mesh con-
struction for these cases, but it requires user interaction in
the construction process. The second open problem is the
extension of subdivision based techniques to time-varying
data. The topology of the surface is explicitly represented
in the base mesh, causing difficulties when time is intro-
duced to the representation. The work of Shamir [7] pro-
vides a starting point for multiresolution time varying sur-
face representations. However, the suggested representa-
tion appears to be difficult to reconcile with multiresolu-
tion compression methods.

In this paper we advocate an alternative approach to
surface compression which is based on a signed-distance
volume representation [8], [9] . A signed-distance vol-
ume is a trivariate distance function encoding the mini-
mum distance to a surface for each volume sample. The
sign changes as the surface is crossed. Figure 1 depicts the
data flow in our system. The resulting compressed surface
is reconstructed by extracting the isosurface with zero dis-
tance.

The signed-distance representation does not directly
specify the topology of the surface. This freedom from
storing the topology increases the potential for using sim-
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Fig. 1. The compression system comprises four modules. The
input surface is transformed into a distance representation then
decomposed into wavelet coefficients. These coefficients are
thresholded using the distance information to retain the surface
geometry. Finally, a zero-tree coder produces the progressive
bit stream.

ple algorithms that will extend elegantly to surfaces that
have high genus and are time varying. We achieve a mul-
tiresolution representation by applying a wavelet decom-
position to the implicit function. Compressing multireso-
lution signed-distance functions has been studied in [10],
[11]. Our contribution is a complete system that over-
comes the problems of existing distance based surface
compression methods. The main features of our method
are as follows:

1. Progressiveness: We generate a progressive encod-
ing of the distance function which can be partially
reconstructed from the most relevant bits of the most
relevant wavelet coefficients. Thus, approximations
of the surface can be viewed without requiring a full
decompression. In addition, the implicit nature of our
representation facilitates topology modification to re-
duce the complexity of the approximate surfaces be-
yond what is attainable by subdivision surface meth-
ods.

2. Scalability: The method is not limited by the need
to re-map a complex surface to a base mesh with
subdivision connectivity. Our algorithm constructs
regularly sampled distance volumes and performs a
wavelet analysis. Thus, surfaces with large numbers
of components and complex topology can be rep-
resented as long as appropriate sampling rates are
used. Our thresholding method removes wavelet co-
efficients that do not contribute to the zero set result-
ing in a size related to the surface complexity.

3. Simplicity: The distance volume representation dis-
penses with a lot of the algorithmic complexity as-

sociated with base mesh construction and explicit
topology tracking. All operations in our method are
performed on regularly sampled volumes. The dis-
tance transform algorithm is based on the propaga-
tion technique of Breen [12] . The algorithm is sim-
ple to implement and can be coded efficiently. The
wavelet transform is the common biorthogonal B-
spline wavelet transform [13] .

4. Autonomy: The algorithm requires only a desired
bit count in order to produce a compressed file. This
is in contrast to subdivision methods which may re-
quire explicit base mesh vertex positioning for sharp
features [4] , editing operations [6] , or multiple fit-
ting parameters for obtaining the base mesh [14].

II. RELATED WORK

Traditional approaches to surface compression have fo-
cused on polygonal mesh compression techniques. Early
methods focused on the encoding of mesh connectivity in-
formation [15], with vertex information being compressed
via quantization and prediction schemes. Surface simplifi-
cation algorithms [16] were introduced to reduce the com-
plexity of scanned surfaces so that editing operations and
compression techniques could be applied. However, these
approaches lacked the level-of-detail reconstruction re-
quired for interactive viewing and remote visualization ap-
plications. Multiresolution mesh representations enabling
both compression and level-of-detail rendering [17], [18],
[19], [14] have been developed to overcome the limita-
tions of traditional mesh compression and simplification
techniques [16]. Multiresolution methods allow selective
refinement operations to adjust surface geometry accord-
ing to a user-defined error criterion or a prescribed trian-
gle budget. Progressive mesh representations such as the
edge-contraction approaches of Hoppe [17] and Pajarola
[20] encode the connectivity of the mesh.

Wavelet transforms have been used to obtain multireso-
lution representations of scalar volume data for rendering
and compression [21], [22], [23], [24], [25] . Tao [26]
described a system for progressively transmitting volume
data encoded as wavelet coefficients. Time-varying vol-
umes were treated with wavelet techniques in the work of
Westermann [27] . Volume compression techniques [1],
[28] based on wavelet transforms have been used the vi-
sualization of large data sets. The present work uses stan-
dard wavelet transforms on volumetric data but is not con-
cerned with representing the entire volume. We retain only
the minimal number of wavelet coefficients necessary to
represent a surface. The error criteria used in the quanti-
zation step are markedly different than those used in the
reviewed work due to the fact that we are concerned with
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minimizing the geometric error of the derived surface.
Multiresolution techniques have also been investigated

in the implicit surface literature. Velho [29] proposed a
multi-scale implicit representation based on a biorthogo-
nal B-spline wavelet transform. Their technique produces
a representation based only on B-spline scaling functions.
They eliminate the wavelet coefficients by projecting the
wavelets onto the scaling basis functions at the next finer
scale. This eliminates the wavelet coefficients at the cost
of an increased number of scaling coefficients. The trade-
off is that all modeling and rendering operations are per-
formed on a hierarchical B-spline representation. The
work does not explicitly treat the problem of compressing
the resulting data.

Closely related to the previous work is the technique
of Grisoni [10], [11] . They represent the field function
of an implicit surface as a sampled volume and apply a
wavelet transform to obtain a multiresolution representa-
tion. Following Velho’s method, they project the wavelets
onto the scaling basis at the next finer level producing a
data structure with only scaling coefficients. Their thresh-
olding scheme operates on the projected coefficients. The
location of the wavelet coefficients is not considered in the
thresholding process. This allows thresholding of coeffi-
cients affecting the reconstructed surface at the expense
of retaining some small coefficients far from the surface.
They propose a sparse storage scheme based on a hash ta-
ble storing the location and value of each coefficient in a
packed three byte block. Coefficients at coarser scales re-
quire fewer bits for encoding position and thus increase
the number bits available for quantizing the coefficient
value. This data structure does not provide control over the
number of bits allocated to the wavelet coefficients, which
could impair the accuracy and efficiency of the compres-
sion. The present work provides both a location-based
thresholding scheme and an adaptive bit allocation method
that reduces geometric error and improves compression.

III. SIGNED-DISTANCE VOLUMES

A signed-distance volume encodes the minimum dis-
tance to a surface for each sample point. The distance
changes sign at the surface so that negative values lie on
one side and positive values on the other. Given a closed
shape, the sign determines whether a point is inside or out-
side of the shape. For isosurfaces, the notion of inside
and outside is not helpful as the surface may exit the dis-
tance volume. In these cases the sign of the distance is
determined by the isovalue without relying on notions of
inside/outside. Signed-distance functions vary smoothly
across the transition from inside to outside which make
them prime candidates for wavelet decomposition. We

formally define the signed distance from a surface � as:�������	��

����������������
���������� �"!"#%$&�(')
+*-,.'/�
(1)

where
����������
��

is negative on one side of the surface and
positive on the other. Most scanned objects are single
closed components making an inside/outside relation easy
to define by insuring triangle normal vectors are oriented
consistently. Isosurfaces from trilinearly interpolated sci-
entific data also have this property although an isosurface
may have a boundary on the boundary of the sampled vol-
ume. In such cases the boundary of the distance volume
must coincide with the boundary of the scientific data. In
the remainder of the paper we will use

����

�
to denote the

approximate distance as computed by a distance transform
algorithm.

A. Error Metrics

Surface errors are required to study the rate distortion
properties of our algorithm. We adopt the 021 error metric
used in [4] and measured by the METRO tool [30]. The
error is defined by taking the max of

�3��4.5 � �
and

�3� � 564-�
,

where
�3��4.5 � �

is the distance between to surfaces
4

and� defined as:

�3��475 � �8�:9 ;<>=@?	< ��4A�8B>C #ED �3��
35 � � 1GF 
IHKJML 1 (2)

where
�3��
�5 � �

is the Euclidean distance from a point

ON4

to the closest point on � . All errors reported in this
paper are relative to the bounding box diagonal length.

IV. THE DISTANCE TRANSFORM

We apply a distance-transform algorithm to surfaces de-
fined by triangle meshes and to isosurfaces from regu-
larly sampled volumetric data. The transform produces
an approximation of the actual distance function using the
closest-point propagation algorithm of Breen [12] . The
distance volume is first initialized with closest-point infor-
mation for all cells intersecting the surface to be encoded
(the zero set). These are the only explicit computations
with respect to the input surface. Once the zero set is ini-
tialized a propagation algorithm assigns the closest points
to the rest of the volume samples. In addition, the zero
set signs are also initialized and this information is propa-
gated along with the closest points.

The propagation technique is essentially a point sam-
pling approach, as the approximation is produced with re-
spect to the initial set of closest points in the zero set. We
begin by describing the propagation algorithm, then de-
scribe the zero set initialization methods for scanned and
scientific surfaces.
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A. Closest Point Propagation

The closest point propagation algorithm relies on the
following heuristic: the closest point of a sample � will
in most cases be geometrically close to the closest points
of the neighbors of � . Our algorithm differs from that of
Breen [12] , since we use a simple queue instead of a pri-
ority queue. Let

�3� � � be the current approximate distance
assigned to sample � . Let ��� � � � denote the closest point
assigned to sample � such that

�3� � �)� ' � * ��� � � �"' . Fi-
nally, when initializing the zero set for meshes the sign
of some distance values may be ambiguous. Each sample
contains a flag amb

� � � which is set if the sign is ambigu-
ous. The propagation algorithm is as follows:

For all distance samples � set
d
� � ��� max float

Initialize the zero set of the distance
field as described in the following
sections.

Place all zero set samples in a queue �
while � is not empty do

Let � � front
� � �

For each 26-neighbor � of � do
If 	 cp � � ��
 ��	�
 d

� � � then
cp

� � ��� cp
� � �

Push � onto �
End if
If � has a sign and amb

� � ��� false
then assign the sign of � to �

end for
end while

Breen et. al. presented a scheme based on a priority-
queue that always examines the sample with the smallest
distance, insuring that a sample is visited only once by
the algorithm. This leads to an expected running time of
O
������� �����

where
�

is the average size of the zero set of
samples. The algorithm presented here may set the dis-
tance value of a sample a small number of times but uses a
simple and fast array based queue and runs in time O

�����
.

On average each distance sample is updated only 1.2 times
for the surfaces we examined.

B. Zero Set Initialization of Isosurfaces

Our current implementation produces signed-distance
volumes of isosurfaces defined on regularly sampled
scalar fields. Instead of formally defining the isosurface
with respect to trilinear interpolation, we compute closest
points based on local gradient estimates. The distance ap-
proximation is constructed at the same resolution as the
initial scalar field. The algorithm examines each volume
cell in the scalar field. If the cell contains the isosurface,
then the distance samples at the cell corners are initialized

with closest point information. Once a distance sample
has been initialized it is not reinitialized later for another
incident cell.

We denote the scalar field by � � � � . Let ��� denote the iso-
value of the desired isosurface. We define a linear approx-
imation about a sample � as �� � ��� � � � � � ���! � � � � � ��� * � �
and compute the closest point:

��� � � �8� � � � � * � � � �'" � � � �"'  � � � � (3)

The scalar field gradient at a given sample point � is esti-
mated by central differencing. The sign of the distance is
positive if � � � ��# �$� and negative otherwise. This approx-
imation is inaccurate for high curvature regions but can
be computed very efficiently. Greater accuracy can be ob-
tained by performing Newton iterations, or by extracting a
mesh and applying the technique in the next section.

C. Zero Set Initialization of Meshes

The zero set initialization for triangle meshes operates
on individual triangles. The algorithm does not use edge
or vertex adjacency information. The zero-set initializa-
tion algorithm proceeds as follows:

For every triangle in the input mesh:
Compute the bounding box of the
triangle

For each cell wholly or partially
included in the bounding box:
For each distance sample � of the
cell:
Compute %'& � � �
Record whether %�& � � � lies on a
face, edge, or vertex.

Let ( � 	'%'& � � ��
 �)	
If (+*-,/.�021'3�4545687:9��<; and (+
>= � � �
then:
place the sample on the
queue of zero set
samples.

Set a flag indicating
that the sample is
queued to prohibit
duplication.

Select the sign of this
sample according to the
rules presented below.

end if
end for

end for
end

The sign of a given sample is computed based on the lo-
cation of its closest point (vertex, edge, or face). Figure 2a
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a b c

 p p

n
n

n

 p

Fig. 2. Zero set initialization for triangle meshes: the sign of a
distance sample is determined using the vector �� from the clos-
est point to the sample and the triangle normal vectors �� .

shows the simplest case where the closest point lies on a
face. In this case the sign is given by the sign of ���� �� where
�� is the triangle normal and �� is the vector from the closest
point to the distance sample. If the closest point lies on an
edge as in Figure 2b, then there are are two dot products
(one for each triangle sharing the edge). The absolute val-
ues of the dot products are compared and the sign of the
larger dot product is taken. Finally, a closest point which
coincides with a vertex of the mesh as in Figure 2c may be
ambiguous if some dot products are negative and others
are positive. However, one cannot use the edge test in this
situation. In these cases the distance sample is marked as
ambiguous and no sign information is propagated for it.
After the distance transform has completed the ambigu-
ous samples are revisited and the following heuristic is
applied: the signs of the 26-neighbors are examined and
the sign of the majority of the neighbors is assigned to the
sample. Our method is very similar to a recently presented
technique [31]. However, their algorithm does not detect
the ambiguous vertex closest points and initializes the in-
correct sign.

V. WAVELET TRANSFORMS

A wavelet transform [32] decomposes a signal into a
sequence of wavelet coefficients representing the details of
the signal at several levels of resolution. These coefficients
are often of small value and can be compressed efficiently.

A. Fast Wavelet Transform

We apply the fast wavelet transform of Mallat [33] to
signed-distance volumes. The left half of Fig. 3 shows
one step of decomposition algorithm. At each step a low
pass filter

��
produces a set of scaling coefficients ( �
	�� J )

which coarsely approximate the input data. Additionally,
a high pass filter

�
 produces a set of wavelet coefficients
( F 	�� J ) representing the details lost in the coarse approxi-

2 a

2

a

j+1d

j+1
~

~g − −

− −hj jaj+1a

d 2

2

j+1

h

g

+

decomposition reconstruction

Fig. 3. (Left) Decomposition filter bank with low pass filter �;
and high pass filter �� . (Right) Reconstruction filter bank with
low pass filter ; and high pass filter � .

3d

1dd

2d 2d

3a

4d
1

a

0a 1a
2

1

3a 3d
d 1d

2d

Fig. 4. (a) Two dimensional extension of the filter bank by
alternating the directions of the filtering steps.

mation. These two filtering steps are repeated recursively
on the coarse approximations to obtain a multiresolution
representation. At each stage the size of the data is down
sampled by a factor of two. We will use the term subband
to refer to a set of wavelet coefficients generated by one
step of the transform.

The original data can be reconstructed by reversing the
process with another set set of filters

�
and 
 in the general

case. The right half of Fig. 3 shows one reconstruction
step. The low pass filter

�
is similar to a subdivision oper-

ator, smoothing the coarse approximations and increasing
their resolution (the number of samples). The high pass
filter 
 re-introduces the details encoded by

�
 and enables
exact reconstruction of the data. Both filters are preceded
by an up sampling by two which inserts zeros between
each pair of input values. In the present work we chose
the linear B-spline wavelets with the following filters:

���� ��� � * ;� ;� �
� ;� * ;� (4)

��� ��� � ;� ; ;� (5)

�
 � ��� � ;� * ; ;� (6)


 � ��� � ;� ;� * �
� ;� ;� (7)

The 2D extension of the algorithm in Fig. 3 is shown
in Fig. 4. The one dimensional transform is alternately
applied to each dimension, creating subbands 1 and 3 in
the



direction ( F J , F�� ) and subbands 2 and 4 in the

,
direction ( F 1 , F
� ). The 3D case follows the same pattern
as Fig. 4 except that the transform directions cycle through
the



,
,

, and � directions. Some readers may note that in
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image processing applications the high pass coefficients
resulting from the



direction filtering are processed by the

filter bank a second time in the
,

direction yielding three
sub-bands per level in the 2D case and seven subbands in
3D (after a � pass). In contrast, our approach generates
one subband per level for data of any dimension.

We chose the direct extension of the filter bank algo-
rithm for three reasons: first, in our experiments on im-
age data the compression rates were better. Second, fewer
operations need to be performed on the data. Third, the
first subband of wavelet coefficients (produced in the first
high pass filtering) effect distance values in the



direction

only. The support of these wavelets is thus local in mem-
ory, enabling simple and local optimization schemes for
allocating bits to these values.

B. Thresholding

The goal of the thresholding step is to reduce the num-
ber of values that need to be coded without introducing
geometric errors. An aggressive thresholding method is
required for efficient distance volume compression. Our
method removes all wavelet coefficients that do not con-
tribute to the reconstructed surface. Thresholding too
many coefficients could result in spurious surface compo-
nents appearing in the distance field. Currently, we do
not have a formalism that allows us to prove that new
components or handles are not added under the method
we present. For complicated surfaces a verification step
can be performed that checks the original distance volume
against the distance volume reconstructed after the thresh-
olding step and warns of any irregularities.

The thresholding method proceeds as follows:

For each subband:
Determine the support of wavelets in
this subband with respect to the
reconstructed samples.

Compute the radius � of a bounding
sphere for the wavelet support.

For each wavelet coefficient within
the subband:
Compute the sample � in the
reconstructed volume
corresponding to the center of
the wavelet basis function

if = � � ��� � set the wavelet
coefficient to zero

end for
end for

Figure 5 illustrates the basic thresholding operation in
2D. On the left is the wavelet transformed signed-distance
field showing three wavelet subbands. On the right we

curves ��������������������������������������������������������

��������������������������������������������������������

d

3

signed−distance

1d

coefficients
wavelet original

d

a

2

5d

4d 3

support
wavelet

Fig. 5. Distance based thresholding: the coefficient in 9�� is set
to zero because its support shown on the right does not overlap
the curves.

have the original signed-distance field as computed for the
two curves shown inside. The wavelet coefficient in F �
can be thresholded because its support does not effect the
curves being represented.

The wavelet support radii are easily computed as they
depend only on the lengths of the filters and the number of
applications of those filters. A more accurate threshold-
ing can be accomplished by explicitly testing the distance
samples in the wavelet support to determine if any belong
to the zero set. This more expensive test would be applied
after the sphere test. However, this scheme was not imple-
mented for this paper.

VI. ZERO-TREE CODING

A progressive wavelet coder should send the most sig-
nificant bits of the most significant wavelet coefficients
first. This amounts to encoding the locations of the sig-
nificant coefficients as efficiently as possible. A zero tree
coder [34] generates a progressive bit stream by utilizing
the property that wavelets decay in magnitude at finer res-
olutions. That is, if one defines a hierarchy of wavelet
coefficients from one subband to the next it is likely that
the child coefficients will be smaller than the parent.

A zero tree is defined as a hierarchy of coefficients for
which �
	�� for every coefficient � in the hierarchy, where
� is a threshold used to determine the significance of any
given coefficient. The zero tree relation is defined for a
quadtree-like hierarchy in 2D and an octree-like hierar-
chy in 3D. Figure 6 depicts the 2D case for our subband
ordering. Two hierarchies are shown, one for the



di-

rection (subbands 1, 3, and 5) and one for the
,

direction
(subbands 2 and 4). A zero tree coder is particularly well
suited to the distance based thresholding method as the
thresholded coefficients are spatially contiguous.

The coding algorithm repeatedly traverses the wavelet
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d4

d2

a5
5

d1

d3

d

Fig. 6. Hierarchies of wavelet coefficients for the zero tree
relation. If all of the coefficients are less than a given threshold,
the entire tree can be skipped until later in the coding process.

coefficients in a predefined order. At any point in the
coding process the wavelet coefficients are divided into
two groups: those that are not yet significant, and those
that have been found to be significant during the current
traversal or a preceding one. The threshold � starts at
half the value of the largest wavelet coefficient, and is di-
vided in half after each traversal. Thus, each traversal pro-
gressively adds more wavelet coefficients to the significant
group and removes them from the insignificant group. A
zero tree is coded by a single symbol the informs the de-
coder that every coefficient in the hierarchy can be skipped
at that stage during decoding. Zero trees efficiently encode
the positions of the insignificant coefficients. Once a co-
efficient is deemed significant, its sign is transmitted and
another bit is added to its representation following each
subsequent traversal of the insignificant coefficients. Our
implementation follows [34] which contains pseudocode
and a small worked example of the algorithm.

VII. RESULTS

We applied our algorithm to two surfaces. All file sizes
are the result of applying the gzip utility to the progres-
sive bit-streams resulting from our zero tree coder. A
horse model was used to compare the performance of the
signed-distance volume approach to the subdivision sur-
face approach in [4]. An isosurface was used to demon-
strate the ability of our algorithm to compress complex
surfaces with many components.

Figure 7 shows four progressive reconstructions of the
horse model for increasing file sizes. The original horse

5.9 KB 18.7 KB

34.6 KB 64.7 KB

Fig. 7. Progressive reconstructions of the horse model from a
compressed distance volume of 64x138x115 samples.
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Fig. 8. Comparison of compression rates of subdivision sur-
faces and signed-distance volumes.

model consists of
� � 5 � ���

vertices and ; � � 5 � ��� triangles.
A good lossless non-progressive mesh compression algo-
rithm [35] generates between

� * ; � bits per vertex. Thus,
one could expect the lossless non-progressive compres-
sion of the horse mesh to produce a file between

� � * ���

kilobytes in size. Our progressive coding begins to repre-
sent the muscle structure of the horse at about

���
kilo-

bytes. Our algorithm is of course a lossy compression
technique.

Figure 8 plots the mean squared geometric error de-
fined in section III-A for the subdivision surface method
of Khodakovsky [4] and our approach. The errors are
scaled to the bounding box diagonal. As expected, the
subdivision surface approach fairs better than the distance
volume method for this smooth model. The base mesh
used for the subdivision based method consists of ; � � ver-
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Data Set Zero Set (s) Propagation (s)

Horse
(32x68x57)

74 2

Turbulence
(256x256x128)

17 157

TABLE I
ELAPSED TIMES FOR THE ZERO SET INITIALIZATION AND

CLOSEST POINT PROPAGATION STEPS OF THE DISTANCE

TRANSFORM.

tices. This small size enables quite efficient compression.
Our method produces a very efficient encoding of the ap-
proximate signed-distance as the original distance func-
tion comprised

� 5 � � � 5 ��� �
floating point values in the case

of the � � 
 ��� � 
 ;�� � distance volume.
Figure 9 shows four reconstructions of a complex iso-

surface compressed with our system. The data set de-
picts the turbulent mixing of two fluids [1] at a resolu-
tion of 2048x2048x1920. The isosurface shown here de-
rives from a subset of 256x256x384 samples. The dis-
tance transform was computed at the same resolution as
the subset of the scalar field. Our system retains the major
features of the surface for small sizes and achieves good
compression through topological modification. This sur-
face is less well suited to subdivision surface techniques
as the size of the base mesh is much larger due to the com-
plex topology and large number of components.

Finally, we present performance results for our sys-
tem. Table I shows the time required for each stage of
the distance transform. All times are reported for an SGI
O2 work station with

� ���
megabytes of ram and a

�����

megahertz MIPS R5000 processor. The zero set initial-
ization cost of triangle meshes is due to the large num-
ber of intersection computations. In contrast, the simple
linear approximation used for scalar field data is ideal.
The propagation time is manageable even for large data
sets. Some improvement is possible if the distance sam-
ples are reordered to improve cache coherence when visit-
ing a sample’s 26-neighborhood. The zerotree coder took
from

��� � * �
seconds for the horse model at various reso-

lutions and geometric errors. The isosurface coding took
between ; * ���

seconds depending on the number of bits
produced.

VIII. DISCUSSION

Our algorithm successfully produces a progressive en-
coding of a signed-distance volume. However, subdivision
surface approaches still produce very compact surface rep-
resentations. One drawback of our current implementation

is the use of the gzip utility as a back-end. This is less ef-
ficient than a compression technique specifically tailored
for wavelet transforms. An arithmetic coder applied to the
coefficient magnitudes should reduce the file sizes even
further.

The geometric error for small bit counts can be im-
proved by modifying the ordering of the bits. A standard
zero tree coder assumes an 0��
	�� error because the signif-
icance test depends only on the value of the coefficient
and not on the size of the corresponding wavelet support.
It is possible for wavelet coefficients at the finest level to
have bits emitted along with coefficients at a coarser level.
However, the mean-squared geometric error metric inte-
grates over the surface area, implying that the significance
test should include the support of the wavelet. Incorpo-
rating the support of the wavelets would insure that all of
the early bits increase the accuracy of the coarser scale
wavelets instead of potentially adding fine scale wavelets,
thus improving the overall error.

Finally, the encoding process should be modified so that
the topology is simplified at early stages and is refined as
more bits are added. Our implementation does not track
topology changes and allows both simplifications and re-
finements to occur. This can produce holes in thin shapes
at small numbers of bits that disappear later in the decod-
ing process. A method for ordering the topology changes
and increasing the significance of the wavelet coefficients
affecting those areas could mitigate this problem.

IX. CONCLUSION

We have presented an algorithm that produces progres-
sively compressed signed-distance volumes. Our method
progressively compresses surfaces without the re-meshing
that is required for subdivision based approaches. Our rep-
resentation does not explicitly represent the surface topol-
ogy, enabling topological modification without complicat-
ing the data structures used in the implementation. We
believe our approach is best suited to surfaces with com-
plicated topology and many components. Time-varying
surfaces pose many problems that can be overcome with
an implicit representation. We believe our compression
techniques can be extended to the time domain to produce
an efficient yet simple surface representation.
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8.1 KB 35 KB
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Fig. 9. Progressive reconstructions of an isosurface of a turbulent mixing simulation.
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[32] Stéphane Mallat, A Wavelet Tour of Signal Processing, Academic
Press, San Diego, 1998.
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